
3D Graphics
The rendering pipeline

1

Reminder : Scene

3D Objects

Light Source

Camera

2

The rendering pipeline

Helps us go from a 3D scene to a 2D image

Vertices &
Camera Indices

Vertex
Shader

Fragment
ShaderRasterizer Depth Buffer Image

Light sources

Minimal rendering pipeline
3

Vertices &
Camera Indices

Vertex
Shader

Fragment
ShaderRasterizer Depth Buffer Image

Light sources
Vertex Shader

Re-express vertices in the camera coordinates system

Project vertices in the frustum

4

Vertices &
Camera Indices

Vertex
Shader

Fragment
ShaderRasterizer Depth Buffer Image

Light sources
Rasterizer

Find which pixel is inside which triangle

Emit fragments (candidates pixel)

5

Vertices &
Camera Indices

Vertex
Shader

Fragment
ShaderRasterizer Depth Buffer Image

Light sources
Fragment Shader

Compute the color to give each fragments

6

Vertices &
Camera Indices

Vertex
Shader

Fragment
ShaderRasterizer Depth Buffer Image

Light sources
Depth Buffer

Choose which Fragment get to become a pixel using a Depth test

7

Vertex Shader

8

Vertices &
Camera Indices

Vertex
Shader

Fragment
ShaderRasterizer Depth Buffer Image

Light sources
Vertex Shader

Re-express vertices in the camera coordinates system

Project vertices in the frustum

9

Camera Space

“Look at” vector

“Up” vector

“Right” vector

10

{Xc,Yc,Zc}

{Xs,Ys,Zs}

Y+

X+

Z+

Reminder Camera

“Look at” vector

“Up” vector

“Right” vector

11

{Xc,Yc,Zc}

{Xs,Ys,Zs}

Y

X

Z
Re-express positions in the camera space

Reminder Camera

12

{Xs,Ys,Zs}

Y = {0,1,0}

X = {1,0,0}

Z = {0,0,1}
Our current coordinates :

{Xs,Ys,Zs} = Xs*X + Ys*Y + Zs*Z

Reminder Camera

“Look at” vector

“Up” vector

“Right” vector

13

{Xs,Ys,Zs}

The camera space

{Xs,Ys,Zs} = Xs’ * R + Ys’ * U + Zs’ * L

Reminder Camera

14

The Mathematical problem

{Xs,Ys,Zs} = Xs’ * R + Ys’ * U + Zs’ * L

{Xs,Ys,Zs} = Xs * X + Ys * Y + Zs * Z

Xs * X + Ys * Y + Zs * Z = Xs’ * R + Ys’ * U + Zs’ * L

 The problem Find Xs’, Ys’, and Zs’

Linear Transformations

https://youtu.be/kYB8IZa5AuE?si=vo2LXj1Vz_gwdasT
15

http://www.youtube.com/watch?v=kYB8IZa5AuE
https://youtu.be/kYB8IZa5AuE?si=vo2LXj1Vz_gwdasT

Linear Transformations

https://youtu.be/rHLEWRxRGiM?si=aKhXMsqAqGqWmSQv 16

http://www.youtube.com/watch?v=rHLEWRxRGiM
https://youtu.be/rHLEWRxRGiM?si=aKhXMsqAqGqWmSQv

Question :

(1 minute alone)

(2 minutes with your neighbors)

(5 minutes with the whole group)

Xs * X + Ys * Y + Zs * Z = Xs’ * R + Ys’ * U + Zs’ * L

What is the matrix that solve this problem

17

Question :

Xs * X + Ys * Y + Zs * Z = Xs’ * R + Ys’ * U + Zs’ * L

18

=

“Up” vector

“Look at” vector“Right” vector

Question :

Xs * X + Ys * Y + Zs * Z = Xs’ * R + Ys’ * U + Zs’ * L

19

=

“Up” vector

“Look at” vector“Right” vector

-1

Question :

Xs * X + Ys * Y + Zs * Z = Xs’ * R + Ys’ * U + Zs’ * L

20

=

“Up” vector

“Look at” vector“Right” vector

Problem with Linear transformations

{Xs,Ys,Zs}

The camera space

{Xs,Ys,Zs} = Xs’ * R + Ys’ * U + Zs’ * L

{Xc,Yc,Zc}

What about the
camera coordinates ?

21

Homogeneous Coordinates

Allow us to “move” the origin of the frame

Using 4 coordinates instead of 3 : Homogeneous coordinates

22

Vector

Same as before

New

Linear Transformation

23

=

Xs * X + Ys * Y + Zs * Z = Xs’ * R + Ys’ * U + Zs’ * L

Affine Transformation

24

=

General case

25

=

Affine Transformation

For a vertex: w = 1

Add the vector T to the vertex

Translate the camera to the origin

{Xc,Yc,Zc}

What about the
camera coordinates ?

26

27

=

Camera Space

Matrix multiplication

28https://www.youtube.com/watch?v=XkY2DOUCWMU

http://www.youtube.com/watch?v=XkY2DOUCWMU
https://www.youtube.com/watch?v=XkY2DOUCWMU

29

Camera Space

View
Matrix

Reminder: Camera

Frustum : the visible part of the scene :

- Near plane
- Far plane
- Aspect ratio
- Field of View

30

Projection Perspective

Objective : we want to express the visible space in the following space

31

-1

-1

1

1 1

0

x in [-1,1]
y in [-1,1]
z in [0,1]

Perspective Projection matrix

- Near plane = n
- Far plane = f
- Aspect ratio = a
- Field of View = fov

32

Problem

After the projection the w coordinate of the vertex is modified.

To solve this issue we normalize all vertex coordinates by dividing them by w

33

Summary Vertex shader

For each vertex v, the vertex shader compute a vertex v’ such that :

34

